Sunday 19 November 2017

Trading System Architektur


Modbus-Organisation Modbus-System-Integrator-Verzeichnis Modbus unterhält eine Datenbank von Unternehmen, die Systemintegrationsdienste über das Modbus-Protokoll bereitstellen. Dies ist nützlich für Benutzer, die etwas von der Unterstützung von Modbus-Anwendungen suchen, um schlüsselfertige Automatisierungsinstallationen abzuschließen. Diese Liste wächst immer und verändert sich. Wenn Sie ein Systemintegrator sind und nicht finden, dass Ihr Unternehmen hier aufgeführt ist, besuchen Sie bitte unsere Kontaktseite, um herauszufinden, wie Sie aufgeführt werden können. Bitte beachten Sie, dass die nachfolgenden Informationen von den jeweiligen Lieferanten erbracht werden und dass diese Angebote keine Anerkennung oder Gewährleistung seitens der Modbus Organisation darstellen. Control Solutions, Inc. Control Solutions, Inc., ein 1995 gegründetes Minnesota-Unternehmen, bietet eine Reihe von Netzwerk-Gateways und Control-Produkten, die auf das Facility Management, die Gebäudeautomation, die Telekommunikation und die Fernüberwachung zugeschnitten sind. EK AUTOMATION ist spezialisiert auf die Bereitstellung von Gesamt-Gebäudeautomation und Integrationslösungen von Konzept, Design bis hin zu voll installierten und verwalteten Systemen. Die Fokussierung auf das Gesamtsystem bietet innovative, maßgeschneiderte, breitbandige Pläne für die Zukunft auf der Grundlage individueller Bedürfnisse und Wünsche. Engagiert für Beziehungen, gewidmet Service und auf die Bedürfnisse des Kunden, EK AUTOMATION ist ein privat geführtes regionale Unternehmen mit Sitz in Hernando, MS. KALKI Communication Technologies KalkiTech ist ein führender Anbieter von standardbasierten Steuerungs-, Kommunikations - und Rechenlösungen für die Energieautomationsindustrie. Das Unternehmen hilft Unternehmen, intelligente Produkte und Systeme zu entwickeln, zu entwickeln und einzusetzen, die den Energiefluss über die gesamte Energie-Wertschöpfungskette messen, überwachen, steuern, visualisieren, verwalten und optimieren - Exploration, Produktion, Verarbeitung, Umwandlung, erneuerbare Energie, Handel, Lagerung und Verbrauch. Echtzeit-Automatisierung Real Time Automation liefert einfach zu bedienende, einfach zu pflegende Netzwerklösungen. Ob Sie ein Regal-Gateway benötigen, um Daten zwischen verschiedenen Netzwerken zu verschieben, eine Tochterkarte zum Netzwerk ermöglichen ein serielles Gerät oder einen Quellcode, um Ihren eingebetteten Prozessoren hinzuzufügen - Real Time Automation hilft Ihnen hier. Unsere einfachen Lösungen und die branchenführende Unterstützung garantieren Ihnen Zeit, Geld und Kopfschmerzen. Sie erhalten Unterstützung von einem Ingenieur, der das Produkt entwickelt hat und ein Produkt, das in den USA hergestellt wird, das immer bestückt ist. Mit RTA kannst du eine Lösung von entdeckt, um in einem Tag implementiert zu nehmen. Das RTA-Team von führenden Automatisierungsingenieuren hat eine bewährte Erfolgsbilanz für die termingerechte Bereitstellung von Budget - und Konformitätsstandards mit umfangreichen Kenntnissen über Modbus TCP, Modbus RTU, DeviceNet, EtherNetIP, LonWorks, PROFINET IO, Profibus, AS Interface, CANopen und BACnet. Seit über zwanzig Jahren entwickelt und fertigt SELETEC elektronische Geräte für medizinische Gassysteme und sorgt für die Systemintegration im Bereich der Überwachungs - und Steuerungssysteme für Industrieanlagen, vor allem, wenn medizinische, wissenschaftliche oder technische Gase eingesetzt werden sollen. AFCON Software und Electronics Ltd. entwickelt und vermarktet effiziente und intuitive Softwarelösungen für SCADAHMI. AFCONs Produkte bieten Werkzeuge für eine breite Palette von Anwendungen, Projektintegration und Interaktion zwischen Mensch und Maschine, über eine Reihe von Bereichen für Industrieautomation, Gebäudeautomation, Sicherheitssysteme, Telemetrie, OEM-Anwendungen, Telemedizin und vieles mehr. Das 1984 gegründete AFCON Software and Electronics Ltd. war eines der ersten Softwareunternehmen, das die Entwicklung von SCADAHMI-Systemen für komplette industrielle Automatisierungslösungen vorantreibt. AFCONs Produkte werden weltweit in mehr als 45.000 Industriegebieten installiert und eingesetzt. Pulse SCADAHMI ist die jüngste Entwicklung von AFCONs bewährten P-CIM für SCADA-Lösungen. Pulse ist ein neuartiges Umfeld für die Integration von Monitoring und Steuerung von mehreren Anwendungen, die sich auf industrielle Automatisierungs-, Brand - und Sicherheits-, Sicherheits - und Gebäudemanagementsysteme spezialisiert haben. Alerton ist führend in interoperablen Gebäudeautomationssystemen (BAS). Betec Engineerings Entwicklungsteam verfügt über umfangreiche Erfahrung in der industriellen Elektronik. Sie arbeiten kooperativ an komplexen Aufgaben in Hard - und Software und bringen innovative Ideen zuverlässig und wirtschaftlich in die Fertigung. Gemeinsam mit den Anwendern, technischen Designern und Käufern definieren sie eine Projektanforderung, setzen dann ihre Entwicklungsingenieure auf die Schaffung des neuen Designs, die Koordination von Hardware - und Software-Entwicklung in Prototypen, die Optimierung des neuen Produkts, bis der Prototyp die Prüfung durchführt und fertig ist. Kurzum, Betec bietet technische Unterstützung bei der Produkt - und Prozessentwicklung Hardware - und Software-Design, Systementwicklung und Gehäuse-Prototyping. BluFlo bietet Internettechnologien zur Fernüberwachung und Steuerung der Öl - und Gasindustrie. CAS bietet Echtzeit - und Embedded-Lösungen, einschließlich schlüsselfertiger Systeme für die Überwachung der Steuerung und Softwareentwicklung für Echtzeit verteilte Systeme - Softwarebibliotheken von mehr als 1000000 Quellcode-Leitungen, die als Bausteine ​​in zahlreichen Anwendungen eingesetzt werden. Wir verwenden moderne Werkzeuge (hauptsächlich ORACLE und Microsoft Frameworks), einschließlich hochrangiger Sprachen, z. B. C, C, Modula-2, Java, Pascal (Delphi), Ada usw. und Betriebssysteme: Windows, Linux und Echtzeit Linux. Wir bauen offene verteilte Applikationen mit XML SQL, COM, OPC, ODBC etc. auf. Der sichere Betrieb der Systeme wird durch Technologien wie VLAN, VPN, Public Key Infrastruktur etc. gewährleistet. FluidIQs wendet digitale Technologie im industriellen Umfeld an. Das Unternehmenssystem-Know-how umfasst PLCs, Remote-Telemetrie-Einheiten (RTUs), PC-basierte Überwachung und Datenerfassung (SCADA), verteilte Steuerungssysteme (DCS), drahtgebundene und drahtlose Telemetrie, Informationssysteme, Glasfasernetze, Instrumentierung und Motor Steuert. Zu den Fähigkeiten gehören Ingenieurdienstleistungen, Fertigung, Außendienstleistungen und Kundenschulungen. FluidIQs ist spezialisiert auf schlüsselfertige Steuerungsprojekte in einer Vielzahl von kommunalen Märkten. Modpac Plus RF Modem bietet eine HF-Verbindung zwischen Modbus und Modbus Plus Geräten. Korenix Technology widmet sich Design und Fertigung Qualität Industrial Networking Kommunikation Produkte wie industriell verwaltete und nicht verwaltete Ethernet-Switches PoE verwaltete und nicht verwaltete Switches Kommunikations-Computer serielle Geräte-Server und Ethernet-basierte Block IO-Module. Korenix Produkte sind weit verbreitet in vertikalen Märkten weltweit angewendet, einschließlich Transport, industrielle Automatisierung Factory ManagementFacility Management, Energieumgebung Monitoringquipment Kontrolle, Militär, POSbanking Telekommunikation und Medizin. Korenix bietet auch maßgeschneiderte Dienstleistungen an. MESCO realisiert komplette Produktentwicklung für Mess - und Regeltechnik. Das Unternehmen Software Engineering Services umfasst PC-Programme, Echtzeit-Betriebssysteme, WEB-Technologie und industrielle Kommunikation. Hardware Engineering Services umfassen Aufgaben mit Embedded Controller, Embedded WEB Server, DSP Technologie, EMV und Eigensicherheit. Die effiziente Projektentwicklung erfolgt durch qualifizierte Ingenieure und eine konsequente Anwendung von Planungsmethoden. Odyssey Controls bietet Lösungen für die industrielle Steuerung und Automatisierung, die von den einfachsten elektrischen Komponenten bis hin zu den anspruchsvollsten programmierbaren Steuerungen reichen. Mit über 10 Jahren Erfahrung in der Branche deckt das Odyssey-Team eine breite Palette von Projektaktivitäten ab. Dies ermöglicht ein vielfältiges Produkt - und Dienstleistungsportfolio, wobei der Schwerpunkt auf dem Design liegt, um Gehäuse und schlüsselfertige Steuerungssysteme zu bauen. Omnipotence Software bietet ECS, ein Allzweckobjekt-orientiertes Automatisierungsprogramm für gewerbliche und industrielle Umgebungen. Automatisierte Aufgaben können über einfache zeitbasierte Zeitpläne und englischsprachige Skripte implementiert werden. ECS kann von Webbrowsern, Webphones und PDAs aus zugegriffen werden. ECS unterstützt ModBus-Geräte über eine Allzweck-Objektklasse, die ein beliebiges ModBus-Register schreiben kann. Open Control Solutions (OCS) ist ein Geschäftsbereich von Data Flow Systems, Inc., dem Hersteller und schlüsselfertigen Lieferanten des TAC II SCADA Systems seit 1981. Open Control Solutions wurde gegründet, um Open-Architecture-Produkte an Industrien wie Petroleum, Power zu liefern Erzeugung, Flüssigkeitsübertragung, Nahrung und Getränk und komprimierte Gase. Die Firmen-SPS werden vom Endbenutzer einfach programmiert und installiert. Der RIO128 bietet 40 digitale Eingänge, 40 digitale Ausgänge, 40 analoge Eingänge und 8 analoge Ausgänge auf einer kompakten Schienenplatine. Der TCU (T2000) ist ein idealer Konstantregler. Die Verwendung eines T2000 eliminiert die meisten Komponenten, die in einem Bedienfeld gefunden werden. Alle bereits erwähnten Produkte beinhalten eine Modbus-Schnittstelle. Parijat SCADAHMI Entwicklungssystem, Visual Basic Module und ActiveX Controls für das Design von SCADAHMI Systemen. Die komplette Systemkonfiguration erfolgt über eine Microsoft Access - oder MS SQL-Datenbank. (Parijatmodbusdrivers. html) Pyramid Solutions ist ein weltweit führendes Software-Engineering - und Systemintegrationsunternehmen. Unsere Communication Systems Group ist spezialisiert auf Produktentwicklung und ermöglicht die Netzwerkkonnektivität durch Software Engineering, Netzwerkprotokollintegration und die Nutzung von Key Connectivity Produkten von Pyramid Solutions und strategischen Partnern . Automatisierungslösungen und kostengünstige Programmierleistungen für Fertigungsunternehmen Mitarbeitererfahrung in verteilten Prozessleitsystemen, programmierbaren Steuerungssystemen und computergestützten Prozesssteuerung. Branchenerfahrung in Textil-, Lebensmittel-, Tabak-, Chemie - (Batch - und Continuous), Metalle, Utilities, Möbel, Reifen und Pharma. STI produziert und bestückt mehrere Standardprodukte, einschließlich Low-Cost-Beschleunigungssensoren Beschleunigungsmesser Montagezubehör und Werkzeuge Beschleunigungssensor Verlängerungskabel Anschlussdosen Schaltboxen Monitorstransmitter Tachometer Basisüberwachungssysteme. Das Unternehmen bietet auch Custome Design und Systeme Integration Services. SCADAware, Inc. (bekannt als die Springfield Automation Gruppe von 1994 bis 2000) befindet sich in Bloomington, Illinois. Diese erfahrene Kraft bietet Produktverkäufe, Steuerung Systemintegration, Software-Design, Service und Support. Scadaware ist spezialisiert auf PC-basierte Steuerungssysteme, Feldbus-IO-Systeme, PC-basierte Client-Server-SCADA-Systeme, benutzerdefinierte Kommunikationstreiber und Dienstprogramme, Custom Software Design, SPS-Steuerungen und Enterprise-Level-Datenerfassung und Reporting. Die meisten Produkte, die benötigt werden, um jedes System zu bauen, sind von SCADAware, Inc. zusammen mit dem Engineering und der Programmierung verfügbar, um eine schlüsselfertige Lösung zu vervollständigen. Stellar Tech Energy Services Inc. ist ein Design - und Integrations-, Fertigungs - und Dienstleistungsunternehmen für die Ölindustrie. Prozesssteuerung und konstruierte Systeme. Tate Engineering Systems, Inc. fungiert als Distributor, Agent, Vertreter oder Integrator von Kesseln und verwandten Produkten, Druckluft-Produkte, Filter, Pumpen, Meter und andere Spezialitäten Produkte. Die anwendungsspezifische Komponente, die an der Spezifikation, Auswahl und Anwendung dieser konstruierten Produkte als Lösungen für spezifische Kundenprobleme beteiligt ist, steht im Mittelpunkt der Wertschöpfungsstrategie von Tates. Valquest Systems schafft Überwachungs - und Steuergeräte für Stromversorger. Viklele Associates bietet modernste Technologielösungen für Datenerfassung, Prozessüberwachung und Automatisierungsanforderungen für unsere Kunden. Copyright 169 2005-2017 Modbus Organisation, Inc. Postfach 628 Hopkinton, MA 01748. Alle Rechte vorbehalten. Durch die Verwendung von Modbus. org akzeptieren Sie die Bedingungen unserer Besuchervereinbarung und Datenschutzbestimmungen. Das EU-Emissionshandelssystem (EU-EHS) Das EU-Emissionshandelssystem (EU-EHS) ist ein Grundpfeiler der EU-Politik zur Bekämpfung des Klimawandels und deren Schlüssel Werkzeug zur Reduzierung der Treibhausgasemissionen kostengünstig. Es ist der weltweit erste große Kohlenstoffmarkt und bleibt der größte. Das Unternehmen betreibt in 31 Ländern (alle 28 EU-Länder plus Island, Liechtenstein und Norwegen) die Emissionen von mehr als 11.000 schweren Energieverbrauchsanlagen (Kraftwerke Ampere Industrieanlagen) und Fluggesellschaften zwischen diesen Ländern rund 45 der EU-Treibhausgasemissionen. Ein Cap - und Trade-System Das EU-EHS arbeitet nach dem Cap - und Trade-Prinzip. Eine Kappe wird auf die Gesamtmenge bestimmter Treibhausgase gesetzt, die von den vom System abgedeckten Anlagen emittiert werden können. Die Kappe wird im Laufe der Zeit reduziert, so dass die Gesamtemissionen fallen. Innerhalb der Mütze erhalten Unternehmen Emissionszertifikate, die sie bei Bedarf handeln können. Sie können auch begrenzte Mengen an internationalen Kredite aus emissionssparenden Projekten weltweit kaufen. Die Begrenzung der Gesamtzahl der verfügbaren Zertifikate stellt sicher, dass sie einen Wert haben. Nach jedem Jahr muss ein Unternehmen genügend Zertifikate abgeben, um alle Emissionen abzudecken, sonst werden starke Geldbußen verhängt. Wenn ein Unternehmen seine Emissionen reduziert, kann es die Reservegelder für seine zukünftigen Bedürfnisse halten oder sie an ein anderes Unternehmen verkaufen, das knapp an Zertifikaten liegt. Der Handel bringt Flexibilität, die die Emissionen sorgt, wo es am wenigsten kostet. Ein robuster CO2-Preis fördert auch Investitionen in saubere, kohlenstoffarme Technologien. Hauptmerkmale der Phase 3 (2013-2020) Die EU-ETS befindet sich nun in ihrer dritten Phase deutlich von den Phasen 1 und 2. Die wichtigsten Änderungen sind: Eine einzige, EU-weite Mütze auf Emissionen gilt anstelle des bisherigen Systems der nationalen Caps Versteigerung ist die Standardmethode für die Zuteilung von Zertifikaten (anstelle der freien Zuteilung) und harmonisierte Zuteilungsregeln gelten für die noch vorhandenen Zertifikate For free Mehr Sektoren und Gase enthalten 300 Millionen Zulagen in der Neuen Einstiegsreserve, um den Einsatz innovativer Technologien für erneuerbare Energien und die CO2-Abscheidung und - Speicherung durch das NER 300-Programm zu finanzieren. Sektoren und Gase abgedeckt Das System umfasst die folgenden Sektoren und Gase mit dem Fokus auf Emissionen, die mit hoher Genauigkeit gemessen, gemeldet und verifiziert werden können: Kohlendioxid (CO 2) aus Energie - und Wärmeerzeugung energieintensive Industriezweige, einschließlich Ölraffinerien, Stahlwerk und Herstellung von Eisen, Aluminium, Metallen, Zement , Kalk, Glas, Keramik, Zellstoff, Papier, Pappe, Säuren und Bulk-organische Chemikalien kommerzielle Luftfahrt Stickoxide (N 2 O) aus der Produktion von Salpetersäure, Adipin und Glyoxylsäuren und Glyoxal-Perfluorkohlenwasserstoffen (PFC) aus der Aluminiumproduktion Teilnahme am EU-EHS Ist verpflichtend für Unternehmen in diesen Sektoren. Aber in einigen Sektoren sind nur Anlagen oberhalb einer bestimmten Grösse enthalten, wobei einige kleine Anlagen ausgeschlossen werden können, wenn die Regierungen fiskalische oder andere Maßnahmen ergreifen, die ihre Emissionen um einen entsprechenden Betrag im Luftverkehrssektor senken werden, bis 2016 gilt das EU-ETS nur für Flüge Zwischen Flughäfen im Europäischen Wirtschaftsraum (EWR). Emissionsreduzierung liefern Das EU-EHS hat bewiesen, dass ein Preis für Kohlenstoff und Handel in ihm funktionieren kann. Die Emissionen aus Anlagen in der Regelung fallen um etwa 5 gegenüber dem Beginn der Phase 3 (2013) (siehe 2015). 2020 Emissionen aus Sektoren, die unter das System fallen, werden 21 niedriger als im Jahr 2005 sein. Entwicklung des CO2-Marktes Im Jahr 2005 ist das EU-EHS das weltweit erste und größte internationale Emissionshandelssystem, das mehr als drei Viertel des internationalen Kohlenstoffhandels ausmacht. Das EU-EHS inspiriert auch die Entwicklung des Emissionshandels in anderen Ländern und Regionen. Die EU zielt darauf ab, das EU-EHS mit anderen kompatiblen Systemen zu verknüpfen. Wichtigste EU-EHS-Gesetzgebung Kohlenstoffmarktberichte Überarbeitung des EU-EHS für Phase 3 Umsetzung Gesetzgebungsgeschichte der Richtlinie 200387DE Arbeit vor dem Kommissionsvorschlag Vorschlag der Kommission vom Oktober 2001 Reaktion der Kommission auf die Lesung des Vorschlags im Rat und im Parlament (einschließlich des gemeinsamen Standpunkts des Rates) Offen Alle Fragen Fragen und Antworten zum überarbeiteten EU-Emissionshandelssystem (Dezember 2008) Was ist das Ziel des Emissionshandels Ziel des EU-Emissionshandelssystems (EU-EHS) ist es, den EU-Mitgliedstaaten zu helfen, ihre Verpflichtungen zur Begrenzung oder Verringerung von Treibhausgasen zu erreichen Emissionen kostengünstig. Den teilnehmenden Unternehmen zu erlauben, Emissionszertifikate zu kaufen oder zu verkaufen, bedeutet, dass Emissionskürzungen zumindest kostengünstig erreicht werden können. Das EU-EHS ist der Eckpfeiler der EU-Strategie zur Bekämpfung des Klimawandels. Es ist das erste internationale Handelssystem für CO 2 - Emissionen in der Welt und ist seit 2005 in Betrieb. Ab 1. Januar 2008 gilt dies nicht nur für die 27 EU-Mitgliedstaaten, sondern auch für die anderen drei Mitglieder des Europäischen Wirtschaftsraums Norwegen, Island und Liechtenstein. Es umfasst derzeit über 10.000 Installationen in den Energie - und Industriebereichen, die gemeinsam für nahezu die Hälfte der EU-Emissionen von CO 2 und 40 ihrer gesamten Treibhausgasemissionen verantwortlich sind. Eine im Juli 2008 verabschiedete Änderung der EU-ETS-Richtlinie wird den Luftverkehrssektor ab 2012 in das System bringen. Wie funktioniert der Emissionshandel Das EU-EHS ist ein Cap - und Trade-System, dh es kapselt das Gesamtniveau der Emissionen , Innerhalb dieser Grenze, ermöglicht es den Teilnehmern des Systems zu kaufen und zu verkaufen Zertifikate, wie sie benötigen. Diese Zulagen sind die gemeinsame Handelswährung im Herzen des Systems. Eine Vergütung gibt dem Inhaber das Recht, eine Tonne CO 2 oder die äquivalente Menge eines anderen Treibhausgases zu emittieren. Die Kappe auf die Gesamtzahl der Zertifikate schafft Knappheit auf dem Markt. In der ersten und zweiten Handelsperiode im Rahmen der Regelung mussten die Mitgliedstaaten nationale Zuteilungspläne (NAP) erarbeiten, die ihre Gesamtnote der ETS-Emissionen bestimmen und wie viele Emissionszertifikate jede Anlage in ihrem Land erhält. Am Ende eines jeden Jahres müssen die Anlagen Zulagen, die ihren Emissionen entsprechen, übergeben. Unternehmen, die ihre Emissionen unter dem Niveau ihrer Zulagen halten, können ihre überschüssigen Zertifikate verkaufen. Die Schwierigkeiten, ihre Emissionen im Einklang mit ihren Zulagen zu halten, haben die Wahl zwischen Maßnahmen zur Reduzierung ihrer eigenen Emissionen wie Investitionen in effizientere Technologien oder mit weniger kohlenstoffintensiven Energiequellen oder dem Kauf der zusätzlichen Vergütungen, die sie auf dem Markt benötigen, oder Eine Kombination der beiden. Solche Entscheidungen werden wahrscheinlich durch relative Kosten bestimmt. Auf diese Weise werden die Emissionen überall dort reduziert, wo es am kostengünstigsten ist. Wie lange das EU-EHS in Betrieb war Das EU-ETS wurde am 1. Januar 2005 aufgelegt. Die erste Handelszeit lief für drei Jahre bis Ende 2007 und war ein Lernen, indem sie Phase für die entscheidende zweite Handelsperiode vorbereitete. Die zweite Handelszeit begann am 1. Januar 2008 und läuft für fünf Jahre bis Ende 2012. Die Bedeutung der zweiten Handelsperiode ergibt sich aus der Tatsache, dass sie mit der ersten Verpflichtungsperiode des Kyoto-Protokolls zusammenfällt, in der die EU und andere Die Industrieländer müssen ihre Ziele erfüllen, um die Treibhausgasemissionen zu begrenzen oder zu reduzieren. Für die zweite Handelsperiode wurden die EU-Emissionsemissionen auf rund 6,5 unter dem Niveau von 2005 begrenzt, um sicherzustellen, dass die EU als Ganzes und die Mitgliedstaaten einzeln ihre Kyoto-Verpflichtungen erfüllen. Was sind die bisherigen Erfahrungen aus der bisherigen Erfahrung Das EU-EHS hat einen Preis auf Kohlenstoff gebracht und bewiesen, dass der Handel mit Treibhausgasemissionen funktioniert. Die erste Handelsperiode hat erfolgreich den freien Handel von Emissionszertifikaten in der gesamten EU etabliert, die notwendige Infrastruktur eingeführt und einen dynamischen CO2-Markt entwickelt. Der Umweltnutzen der ersten Phase kann aufgrund einer übermäßigen Zuteilung von Zertifikaten in einigen Mitgliedstaaten und einigen Sektoren begrenzt werden, was vor allem auf die Abhängigkeit von Emissionsprojektionen zurückzuführen ist, bevor die verifizierten Emissionsdaten im Rahmen des EU-EHS vorliegen. Als die Veröffentlichung der verifizierten Emissionsdaten für 2005 diese Überbewertung verdeutlichte, reagierte der Markt, wie man erwarten würde, indem der Marktpreis der Zertifikate gesenkt würde. Die Verfügbarkeit der verifizierten Emissionsdaten hat es der Kommission ermöglicht, sicherzustellen, dass die Kappe auf die nationalen Zuweisungen im Rahmen der zweiten Phase auf ein Niveau gesetzt wird, das zu einer tatsächlichen Emissionsreduktion führt. Neben der Unterstreichung der Notwendigkeit nach verifizierter Daten hat die bisherige Erfahrung gezeigt, dass eine stärkere Harmonisierung innerhalb des EU-EHS zwingend erforderlich ist, um sicherzustellen, dass die EU ihre Emissionsreduktionsziele zumindest mit Kosten und mit minimalen Wettbewerbsverzerrungen erreicht. Die Notwendigkeit einer stärkeren Harmonisierung ist am deutlichsten, wie die Deckung der Gesamtemissionszertifikate festgelegt ist. Die ersten beiden Handelsperioden zeigen auch, dass weitgehende nationale Methoden für die Zuteilung von Zulagen für Anlagen einen fairen Wettbewerb im Binnenmarkt bedrohen. Darüber hinaus sind eine stärkere Harmonisierung, Klärung und Verfeinerung in Bezug auf den Geltungsbereich des Systems, den Zugang zu Kredite aus Emissionsreduktionsprojekten außerhalb der EU, die Bedingungen für die Verknüpfung des EU-EHS mit Emissionshandelssystemen anderweitig und die Überwachung, Überprüfung und Berichtsanforderungen. Was sind die wichtigsten Änderungen am EU-EHS und ab wann werden sie angewendet. Die vereinbarten Konstruktionsänderungen gelten ab dem dritten Handelstag, dh im Januar 2013. Während die Vorbereitungsarbeiten sofort eingeleitet werden, werden sich die geltenden Regeln erst im Januar 2013 ändern Um sicherzustellen, dass die Regulierungsstabilität beibehalten wird. Das EU-ETS in der dritten Periode wird ein effizienteres, harmonisierteres und faireres System sein. Durch eine längere Handelsperiode (8 Jahre statt 5 Jahre) wird eine erhöhte Effizienz erreicht, eine robuste und jährlich rückläufige Emissionskapitalisierung (21 Reduktion im Jahr 2020 gegenüber 2005) und eine deutliche Erhöhung der Versteigerung (von weniger als 4 Jahren) In Phase 2 auf mehr als die Hälfte in Phase 3). In vielen Bereichen wurde mehr Harmonisierung vereinbart, unter anderem in Bezug auf die Cap-Einstellung (eine EU-weite Cap statt der nationalen Caps in den Phasen 1 und 2) und die Regeln für die Übergangsfreiheit. Die Fairness des Systems wurde durch den Übergang zu EU-weiten Freizügigkeitsregeln für Industrieanlagen und durch die Einführung eines Umverteilungsmechanismus, der neue Mitgliedstaaten berechtigt, mehr Zulagen zu vergeben, erheblich erhöht. Wie verhält sich der endgültige Text mit dem ursprünglichen Kommissionsvorschlag Die von der Frühjahrstagung des Europäischen Rates von 2007 vereinbarten Klima - und Energieziele wurden beibehalten und die Gesamtarchitektur des Kommissionsvorschlags zum EU-EHS bleibt erhalten. Das heißt, es wird eine EU-weite Kappe auf die Anzahl der Emissionszertifikate geben, und diese Kappe wird jährlich entlang einer linearen Trendlinie sinken, die über das Ende der dritten Handelsperiode (2013-2020) hinausgehen wird. Der Hauptunterschied im Vergleich zu dem Vorschlag ist, dass die Versteigerung von Zertifikaten in langsamer ablaufen wird. Was sind die wesentlichen Änderungen gegenüber dem Kommissionsvorschlag Zusammenfassend sind die wichtigsten Änderungen, die an dem Vorschlag vorgenommen wurden, wie folgt: Bestimmte Mitgliedstaaten sind eine fakultative und vorübergehende Abweichung von der Regel zulässig, dass keine Zulagen kostenlos zugewiesen werden dürfen An Stromerzeuger ab 2013. Diese Option zur Abweichung steht den Mitgliedstaaten zur Verfügung, die bestimmte Voraussetzungen für die Zusammenschaltung ihres Stromnetzes, den Anteil eines einzigen fossilen Brennstoffs an der Stromerzeugung und die GDPcapita im Verhältnis zum EU-27-Durchschnitt erfüllen. Darüber hinaus ist die Höhe der freien Zulagen, die ein Mitgliedstaat Kraftwerken zuordnen kann, auf 70 Kohlendioxid-Emissionen relevanter Pflanzen in Phase 1 beschränkt und in den darauffolgenden Jahren zurückgegangen. Darüber hinaus kann die freie Zuteilung in Phase 3 nur für Kraftwerke erfolgen, die bis spätestens Ende 2008 in Betrieb sind oder im Bau sind. Siehe Antwort auf Frage 15 unten. In der Richtlinie werden weitere Einzelheiten in Bezug auf die Kriterien für die Bestimmung der Sektoren oder Teilsektoren, die als ein erhebliches Risiko für CO2-Leckagen ausgesetzt sind, verwendet. Und einen früheren Zeitpunkt der Veröffentlichung der Kommissionsliste dieser Sektoren (31. Dezember 2009). Darüber hinaus erhalten die Anlagen in allen exponierten Branchen, wenn eine zufriedenstellende internationale Vereinbarung getroffen wird, 100 Freibeträge, soweit sie die effizienteste Technologie nutzen. Die freie Zuteilung an die Industrie beschränkt sich auf den Anteil dieser Emissionen in den Emissionen der Emissionen in den Jahren 2005 bis 2007. Die Gesamtzahl der Zulagen, die den Anlagen in den Industriezweigen zugänglich gemacht werden, wird jährlich im Einklang mit dem Rückgang der Emissionsobergrenze sinken. Die Mitgliedstaaten können auch bestimmte Anlagen für CO 2 - Kosten, die in den Strompreisen verabschiedet werden, entschädigen, wenn die CO 2 - Kosten ansonsten die Gefahr von CO2-Leckagen aussetzen könnten. Die Kommission hat sich verpflichtet, die gemeinschaftlichen Leitlinien für staatliche Beihilfen für den Umweltschutz in dieser Hinsicht zu ändern. Siehe Antwort auf Frage 15 unten. Das Niveau der Versteigerung von Zulagen für nicht exponierte Industrie wird in einer linearen Weise, wie von der Kommission vorgeschlagen, zunehmen, aber anstatt 100 bis 2020 zu erreichen, wird es 70 erreichen, um 100 bis 2027 zu erreichen. Wie im Kommissionsvorschlag vorgesehen Werden 10 der Zulagen für die Versteigerung aus den Mitgliedstaaten mit hohem Pro-Kopf-Einkommen an diejenigen mit niedrigem Pro-Kopf-Einkommen verteilt, um die finanzielle Leistungsfähigkeit der letzteren zu stärken, um in klimafreundliche Technologien zu investieren. Es wurde eine Rückstellung für einen weiteren Umverteilungsmechanismus von 2 von Versteigerungsbeihilfen hinzugefügt, um die Mitgliedstaaten zu berücksichtigen, die im Jahr 2005 eine Verringerung der Treibhausgasemissionen von mindestens 20 in Bezug auf das im Kyoto-Protokoll festgelegte Referenzjahr erreicht hatten. Der Anteil der Versteigerungserlöse, den die Mitgliedstaaten zur Bekämpfung und Anpassung an den Klimawandel vor allem in der EU, aber auch in den Entwicklungsländern empfiehlt, wird von 20 auf 50 angehoben. Der Text sieht eine Ergänzung der vorgeschlagenen zulässigen Ebene vor Der Verwendung von JICDM-Credits in den 20 Szenarien für bestehende Betreiber, die die niedrigsten Budgets für die Einfuhr und Nutzung solcher Kredite in Bezug auf Zuweisungen und Zugang zu Krediten im Zeitraum 2008-2012 erhielten. Neue Sektoren, neue Marktteilnehmer in den Zeiträumen 2013-2020 und 2008-2012 können auch Kredite nutzen. Der Gesamtbetrag der Kredite, die verwendet werden können, wird jedoch 50 der Verringerung zwischen 2008 und 2020 nicht überschreiten. Auf der Grundlage einer strengeren Emissionsreduktion im Rahmen eines zufriedenstellenden internationalen Abkommens könnte die Kommission einen zusätzlichen Zugang zu CER und ERUs ermöglichen Betreiber im Gemeinschaftssystem. Siehe Antwort auf Frage 20 unten. Die Erlöse aus der Versteigerung von 300 Millionen Zulagen aus der Neueinsteigerreserve werden zur Unterstützung von bis zu 12 CO2-Capture - und Storage-Demonstrationsprojekten und - projekten verwendet, die innovative Technologien für erneuerbare Energien demonstrieren. Eine Reihe von Bedingungen sind diesem Finanzierungsmechanismus beigefügt. Siehe Antwort auf Frage 30 unten. Die Möglichkeit, kleine Verbrennungsanlagen auszuschließen, sofern sie gleichwertigen Maßnahmen unterzogen wurden, wurde auf alle kleinen Anlagen unabhängig von der Tätigkeit ausgedehnt, die Emissionsgrenze wurde von 10.000 auf 25.000 Tonnen CO 2 pro Jahr und die Kapazitätsgrenze erhöht Die Verbrennungsanlagen müssen zusätzlich von 25MW bis 35MW erreicht werden. Mit diesen erhöhten Schwellenwerten wird der Anteil der abgedeckten Emissionen, die möglicherweise aus dem Emissionshandelssystem ausgeschlossen wären, erheblich, und folglich wurde eine Rückstellung hinzugefügt, um eine entsprechende Verringerung der EU-weiten Deckung auf Zertifikate zu ermöglichen. Gibt es noch nationale Zuteilungspläne (NAPs) Nein. In ihren NAPs für die ersten (2005-2007) und die zweiten (2008-2012) Handelsperioden haben die Mitgliedstaaten die Gesamtmenge der Zertifikate festgelegt, die die Kappe ausgestellt werden sollen und wie diese Den betroffenen Anlagen zugewiesen werden. Dieser Ansatz hat erhebliche Unterschiede in den Zuteilungsregeln hervorgebracht, die für jeden Mitgliedstaat einen Anreiz schaffen, seine eigene Industrie zu begünstigen und zu großer Komplexität geführt zu haben. Ab dem dritten Handelstag wird es eine einzige EU-weite Deckung geben, und die Zulagen werden auf der Grundlage harmonisierter Regeln vergeben. Nationale Zuteilungspläne werden daher nicht mehr benötigt. Wie wird die Emissionskappe in Phase 3 bestimmt Die Regeln für die Berechnung der EU-weiten Kappe sind wie folgt: Ab 2013 wird die Gesamtzahl der Zertifikate jährlich linear abnehmen. Ausgangspunkt dieser Linie ist die durchschnittliche Gesamtmenge der Zertifikate (Phase 2 Cap), die von den Mitgliedstaaten für den Zeitraum 2008-12 ausgegeben werden, angepasst an den erweiterten Geltungsbereich des Systems ab 2013 sowie alle kleinen Installationen, die Mitglied sind Die Staaten haben sich ausgeschlossen. Der lineare Faktor, um den die jährliche Menge sinken wird, beträgt 1,74 gegenüber der Phase 2 Cap. Ausgangspunkt für die Bestimmung des linearen Faktors von 1,74 ist die 20 Gesamtreduktion von Treibhausgasen im Vergleich zu 1990, was einer Reduktion von 14 gegenüber 2005 entspricht. Allerdings ist eine größere Reduktion des EU-ETS erforderlich, weil es günstiger ist, zu reduzieren Emissionen in den ETS-Sektoren. Die Division, die die Gesamtreduzierungskosten minimiert, beläuft sich auf: eine Verringerung der Emissionen des EU-EHS-Sektors im Vergleich zu 2005 bis 2020 um 10% gegenüber 2005 für die Sektoren, die nicht unter das EU-EHS fallen. Die 21-Reduktion im Jahr 2020 führt zu einer ETS-Cap im Jahr 2020 von maximal 1720 Millionen Zertifikaten und impliziert eine durchschnittliche Phase 3 Cap (2013 bis 2020) von rund 1846 Millionen Zertifikaten und eine Reduktion von 11 im Vergleich zur Phase 2 Cap. Alle absoluten Zahlen entsprechen der Deckung zu Beginn der zweiten Handelsperiode und berücksichtigen daher nicht die im Jahr 2012 hinzugefügte Luftfahrt und andere Sektoren, die in Phase 3 hinzugefügt werden. Die endgültigen Zahlen für die jährlichen Emissionsobergrenzen In Phase 3 wird von der Kommission bis zum 30. September 2010 festgelegt und veröffentlicht. Wie wird die Emissionskappe jenseits der Phase 3 bestimmt Der lineare Faktor von 1,74, der zur Bestimmung der Phase-3-Cap verwendet wird, wird auch weiterhin über das Ende des Handelszeitraums hinausgehen 2020 und bestimmt die Kappe für die vierte Handelsperiode (2021 bis 2028) und darüber hinaus. Sie kann bis spätestens 2025 überarbeitet werden. Tatsächlich werden bis 2050 signifikante Emissionsminderungen von 60-80 gegenüber 1990 erforderlich sein, um das strategische Ziel zu erreichen, die globale durchschnittliche Temperaturerhöhung auf nicht mehr als 2C über dem vorindustriellen Niveau zu begrenzen. Für jedes einzelne Jahr wird eine EU-weite Deckung für Emissionszertifikate festgelegt. Wird dies die Flexibilität für die betroffenen Anlagen verringern, wird die Flexibilität für Installationen nicht reduziert. In jedem Jahr müssen die Zulagen, die versteigert und verteilt werden, von den zuständigen Behörden bis zum 28. Februar ausgestellt werden. The last date for operators to surrender allowances is 30 April of the year following the year in which the emissions took place. So operators receive allowances for the current year before they have to surrender allowances to cover their emissions for the previous year. Allowances remain valid throughout the trading period and any surplus allowances can now be banked for use in subsequent trading periods. In this respect nothing will change. The system will remain based on trading periods, but the third trading period will last eight years, from 2013 to 2020, as opposed to five years for the second phase from 2008 to 2012. For the second trading period Member States generally decided to allocate equal total quantities of allowances for each year. The linear decrease each year from 2013 will correspond better to expected emissions trends over the period. What are the tentative annual ETS cap figures for the period 2013 to 2020 The tentative annual cap figures are as follows: These figures are based on the scope of the ETS as applicable in phase 2 (2008 to 2012), and the Commissions decisions on the national allocation plans for phase 2, amounting to 2083 million tonnes. These figures will be adjusted for several reasons. Firstly, adjustment will be made to take into account the extensions of the scope in phase 2, provided that Member States substantiate and verify their emissions accruing from these extensions. Secondly, adjustment will be made with respect to further extensions of the scope of the ETS in the third trading period. Thirdly, any opt-out of small installations will lead to a corresponding reduction of the cap. Fourthly, the figures do not take account of the inclusion of aviation, nor of emissions from Norway, Iceland and Liechtenstein. Will allowances still be allocated for free Yes. Industrial installations will receive transitional free allocation. And in those Member States that are eligible for the optional derogation, power plants may, if the Member State so decides, also receive free allowances. It is estimated that at least half of the available allowances as of 2013 will be auctioned. While the great majority of allowances has been allocated free of charge to installations in the first and second trading periods, the Commission proposed that auctioning of allowances should become the basic principle for allocation. This is because auctioning best ensures the efficiency, transparency and simplicity of the system and creates the greatest incentive for investments in a low-carbon economy. It best complies with the polluter pays principle and avoids giving windfall profits to certain sectors that have passed on the notional cost of allowances to their customers despite receiving them for free. How will allowances be handed out for free By 31 December 2010, the Commission will adopt EU-wide rules, which will be developed under a committee procedure (Comitology). These rules will fully harmonise allocations and thus all firms across the EU with the same or similar activities will be subject to the same rules. The rules will ensure as far as possible that the allocation promotes carbon-efficient technologies. The adopted rules provide that to the extent feasible, allocations are to be based on so-called benchmarks, e. g. a number of allowances per quantity of historical output. Such rules reward operators that have taken early action to reduce greenhouse gases, better reflect the polluter pays principle and give stronger incentives to reduce emissions, as allocations would no longer depend on historical emissions. All allocations are to be determined before the start of the third trading period and no ex-post adjustments will be allowed. Which installations will receive free allocations and which will not How will negative impacts on competitiveness be avoided Taking into account their ability to pass on the increased cost of emission allowances, full auctioning is the rule from 2013 onwards for electricity generators. However, Member States who fulfil certain conditions relating to their interconnectivity or their share of fossil fuels in electricity production and GDP per capita in relation to the EU-27 average, have the option to temporarily deviate from this rule with respect to existing power plants. The auctioning rate in 2013 is to be at least 30 in relation to emissions in the first period and has to increase progressively to 100 no later than 2020. If the option is applied, the Member State has to undertake to invest in improving and upgrading of the infrastructure, in clean technologies and in diversification of their energy mix and sources of supply for an amount to the extent possible equal to the market value of the free allocation. In other sectors, allocations for free will be phased out progressively from 2013, with Member States agreeing to start at 20 auctioning in 2013, increasing to 70 auctioning in 2020 with a view to reaching 100 in 2027. However, an exception will be made for installations in sectors that are found to be exposed to a significant risk of carbon leakage. This risk could occur if the EU ETS increased production costs so much that companies decided to relocate production to areas outside the EU that are not subject to comparable emission constraints. The Commission will determine the sectors concerned by 31 December 2009. To do this, the Commission will assess inter alia whether the direct and indirect additional production costs induced by the implementation of the ETS Directive as a proportion of gross value added exceed 5 and whether the total value of its exports and imports divided by the total value of its turnover and imports exceeds 10. If the result for either of these criteria exceeds 30, the sector would also be considered to be exposed to a significant risk of carbon leakage. Installations in these sectors would receive 100 of their share in the annually declining total quantity of allowances for free. The share of these industries emissions is determined in relation to total ETS emissions in 2005 to 2007. CO 2 costs passed on in electricity prices could also expose certain installations to the risk of carbon leakage. In order to avoid such risk, Member States may grant a compensation with respect to such costs. In the absence of an international agreement on climate change, the Commission has undertaken to modify the Community guidelines on state aid for environmental protection in this respect. Under an international agreement which ensures that competitors in other parts of the world bear a comparable cost, the risk of carbon leakage may well be negligible. Therefore, by 30 June 2010, the Commission will carry out an in-depth assessment of the situation of energy-intensive industry and the risk of carbon leakage, in the light of the outcome of the international negotiations and also taking into account any binding sectoral agreements that may have been concluded. The report will be accompanied by any proposals considered appropriate. These could potentially include maintaining or adjusting the proportion of allowances received free of charge to industrial installations that are particularly exposed to global competition or including importers of the products concerned in the ETS. Who will organise the auctions and how will they be carried out Member States will be responsible for ensuring that the allowances given to them are auctioned. Each Member State has to decide whether it wants to develop its own auctioning infrastructure and platform or whether it wants to cooperate with other Member States to develop regional or EU-wide solutions. The distribution of the auctioning rights to Member States is largely based on emissions in phase 1 of the EU ETS, but a part of the rights will be redistributed from richer Member States to poorer ones to take account of the lower GDP per head and higher prospects for growth and emissions among the latter. It is still the case that 10 of the rights to auction allowances will be redistributed from Member States with high per capita income to those with low per capita income in order to strengthen the financial capacity of the latter to invest in climate friendly technologies. However, a provision has been added for another redistributive mechanism of 2 to take into account Member States which in 2005 had achieved a reduction of at least 20 in greenhouse gas emissions compared with the reference year set by the Kyoto Protocol. Nine Member States benefit from this provision. Any auctioning must respect the rules of the internal market and must therefore be open to any potential buyer under non-discriminatory conditions. By 30 June 2010, the Commission will adopt a Regulation (through the comitology procedure) that will provide the appropriate rules and conditions for ensuring efficient, coordinated auctions without disturbing the allowance market. How many allowances will each Member State auction and how is this amount determined All allowances which are not allocated free of charge will be auctioned. A total of 88 of allowances to be auctioned by each Member State is distributed on the basis of the Member States share of historic emissions under the EU ETS. For purposes of solidarity and growth, 12 of the total quantity is distributed in a way that takes into account GDP per capita and the achievements under the Kyoto-Protocol. Which sectors and gases are covered as of 2013 The ETS covers installations performing specified activities. Since the start it has covered, above certain capacity thresholds, power stations and other combustion plants, oil refineries, coke ovens, iron and steel plants and factories making cement, glass, lime, bricks, ceramics, pulp, paper and board. As for greenhouse gases, it currently only covers carbon dioxide emissions, with the exception of the Netherlands, which has opted in emissions from nitrous oxide. As from 2013, the scope of the ETS will be extended to also include other sectors and greenhouse gases. CO 2 emissions from petrochemicals, ammonia and aluminium will be included, as will N2O emissions from the production of nitric, adipic and glyocalic acid production and perfluorocarbons from the aluminium sector. The capture, transport and geological storage of all greenhouse gas emissions will also be covered. These sectors will receive allowances free of charge according to EU-wide rules, in the same way as other industrial sectors already covered. As of 2012, aviation will also be included in the EU ETS. Will small installations be excluded from the scope A large number of installations emitting relatively low amounts of CO 2 are currently covered by the ETS and concerns have been raised over the cost-effectiveness of their inclusion. As from 2013, Member States will be allowed to remove these installations from the ETS under certain conditions. The installations concerned are those whose reported emissions were lower than 25 000 tonnes of CO 2 equivalent in each of the 3 years preceding the year of application. For combustion installations, an additional capacity threshold of 35MW applies. In addition Member States are given the possibility to exclude installations operated by hospitals. The installations may be excluded from the ETS only if they will be covered by measures that will achieve an equivalent contribution to emission reductions. How many emission credits from third countries will be allowed For the second trading period, Member States allowed their operators to use significant quantities of credits generated by emission-saving projects undertaken in third countries to cover part of their emissions in the same way as they use ETS allowances. The revised Directive extends the rights to use these credits for the third trading period and allows a limited additional quantity to be used in such a way that the overall use of credits is limited to 50 of the EU-wide reductions over the period 2008-2020. For existing installations, and excluding new sectors within the scope, this will represent a total level of access of approximately 1.6 billion credits over the period 2008-2020. In practice, this means that existing operators will be able to use credits up to a minimum of 11 of their allocation during the period 2008-2012, while a top-up is foreseen for operators with the lowest sum of free allocation and allowed use of credits in the 2008-2012 period. New sectors and new entrants in the third trading period will have a guaranteed minimum access of 4.5 of their verified emissions during the period 2013-2020. For the aviation sector, the minimum access will be 1.5. The precise percentages will be determined through comitology. These projects must be officially recognised under the Kyoto Protocols Joint Implementation (JI) mechanism (covering projects carried out in countries with an emissions reduction target under the Protocol) or Clean Development Mechanism (CDM) (for projects undertaken in developing countries). Credits from JI projects are known as Emission Reduction Units (ERUs) while those from CDM projects are called Certified Emission Reductions (CERs). On the quality side only credits from project types eligible for use in the EU trading scheme during the period 2008-2012 will be accepted in the period 2013-2020. Furthermore, from 1 January 2013 measures may be applied to restrict the use of specific credits from project types. Such a quality control mechanism is needed to assure the environmental and economic integrity of future project types. To create greater flexibility, and in the absence of an international agreement being concluded by 31 December 2009, credits could be used in accordance with agreements concluded with third countries. The use of these credits should however not increase the overall number beyond 50 of the required reductions. Such agreements would not be required for new projects that started from 2013 onwards in Least Developed Countries. Based on a stricter emissions reduction in the context of a satisfactory international agreement . additional access to credits could be allowed, as well as the use of additional types of project credits or other mechanisms created under the international agreement. However, once an international agreement has been reached, from January 2013 onwards only credits from projects in third countries that have ratified the agreement or from additional types of project approved by the Commission will be eligible for use in the Community scheme. Will it be possible to use credits from carbon sinks like forests No. Before making its proposal, the Commission analysed the possibility of allowing credits from certain types of land use, land-use change and forestry (LULUCF) projects which absorb carbon from the atmosphere. It concluded that doing so could undermine the environmental integrity of the EU ETS, for the following reasons: LULUCF projects cannot physically deliver permanent emissions reductions. Insufficient solutions have been developed to deal with the uncertainties, non-permanence of carbon storage and potential emissions leakage problems arising from such projects. The temporary and reversible nature of such activities would pose considerable risks in a company-based trading system and impose great liability risks on Member States. The inclusion of LULUCF projects in the ETS would require a quality of monitoring and reporting comparable to the monitoring and reporting of emissions from installations currently covered by the system. This is not available at present and is likely to incur costs which would substantially reduce the attractiveness of including such projects. The simplicity, transparency and predictability of the ETS would be considerably reduced. Moreover, the sheer quantity of potential credits entering the system could undermine the functioning of the carbon market unless their role were limited, in which case their potential benefits would become marginal. The Commission, the Council and the European Parliament believe that global deforestation can be better addressed through other instruments. For example, using part of the proceeds from auctioning allowances in the EU ETS could generate additional means to invest in LULUCF activities both inside and outside the EU, and may provide a model for future expansion. In this respect the Commission has proposed to set up the Global Forest Carbon Mechanism that would be a performance-based system for financing reductions in deforestation levels in developing countries. Besides those already mentioned, are there other credits that could be used in the revised ETS Yes. Projects in EU Member States which reduce greenhouse gas emissions not covered by the ETS could issue credits. These Community projects would need to be managed according to common EU provisions set up by the Commission in order to be tradable throughout the system. Such provisions would be adopted only for projects that cannot be realised through inclusion in the ETS. The provisions will seek to ensure that credits from Community projects do not result in double-counting of emission reductions nor impede other policy measures to reduce emissions not covered by the ETS, and that they are based on simple, easily administered rules. Are there measures in place to ensure that the price of allowances wont fall sharply during the third trading period A stable and predictable regulatory framework is vital for market stability. The revised Directive makes the regulatory framework as predictable as possible in order to boost stability and rule out policy-induced volatility. Important elements in this respect are the determination of the cap on emissions in the Directive well in advance of the start of the trading period, a linear reduction factor for the cap on emissions which continues to apply also beyond 2020 and the extension of the trading period from 5 to 8 years. The sharp fall in the allowance price during the first trading period was due to over-allocation of allowances which could not be banked for use in the second trading period. For the second and subsequent trading periods, Member States are obliged to allow the banking of allowances from one period to the next and therefore the end of one trading period is not expected to have any impact on the price. A new provision will apply as of 2013 in case of excessive price fluctuations in the allowance market. If, for more than six consecutive months, the allowance price is more than three times the average price of allowances during the two preceding years on the European market, the Commission will convene a meeting with Member States. If it is found that the price evolution does not correspond to market fundamentals, the Commission may either allow Member States to bring forward the auctioning of a part of the quantity to be auctioned, or allow them to auction up to 25 of the remaining allowances in the new entrant reserve. The price of allowances is determined by supply and demand and reflects fundamental factors like economic growth, fuel prices, rainfall and wind (availability of renewable energy) and temperature (demand for heating and cooling) etc. A degree of uncertainty is inevitable for such factors. The markets, however, allow participants to hedge the risks that may result from changes in allowances prices. Are there any provisions for linking the EU ETS to other emissions trading systems Yes. One of the key means to reduce emissions more cost-effectively is to enhance and further develop the global carbon market. The Commission sees the EU ETS as an important building block for the development of a global network of emission trading systems. Linking other national or regional cap-and-trade emissions trading systems to the EU ETS can create a bigger market, potentially lowering the aggregate cost of reducing greenhouse gas emissions. The increased liquidity and reduced price volatility that this would entail would improve the functioning of markets for emission allowances. This may lead to a global network of trading systems in which participants, including legal entities, can buy emission allowances to fulfil their respective reduction commitments. The EU is keen to work with the new US Administration to build a transatlantic and indeed global carbon market to act as the motor of a concerted international push to combat climate change. While the original Directive allows for linking the EU ETS with other industrialised countries that have ratified the Kyoto Protocol, the new rules allow for linking with any country or administrative entity (such as a state or group of states under a federal system) which has established a compatible mandatory cap-and-trade system whose design elements would not undermine the environmental integrity of the EU ETS. Where such systems cap absolute emissions, there would be mutual recognition of allowances issued by them and the EU ETS. What is a Community registry and how does it work Registries are standardised electronic databases ensuring the accurate accounting of the issuance, holding, transfer and cancellation of emission allowances. As a signatory to the Kyoto Protocol in its own right, the Community is also obliged to maintain a registry. This is the Community Registry, which is distinct from the registries of Member States. Allowances issued from 1 January 2013 onwards will be held in the Community registry instead of in national registries. Will there be any changes to monitoring, reporting and verification requirements The Commission will adopt a new Regulation (through the comitology procedure) by 31 December 2011 governing the monitoring and reporting of emissions from the activities listed in Annex I of the Directive. A separate Regulation on the verification of emission reports and the accreditation of verifiers should specify conditions for accreditation, mutual recognition and cancellation of accreditation for verifiers, and for supervision and peer review as appropriate. What provision will be made for new entrants into the market Five percent of the total quantity of allowances will be put into a reserve for new installations or airlines that enter the system after 2013 (new entrants). The allocations from this reserve should mirror the allocations to corresponding existing installations. A part of the new entrant reserve, amounting to 300 million allowances, will be made available to support the investments in up to 12 demonstration projects using the carbon capture and storage technology and demonstration projects using innovative renewable energy technologies. There should be a fair geographical distribution of the projects. In principle, any allowances remaining in the reserve shall be distributed to Member States for auctioning. The distribution key shall take into account the level to which installations in Member States have benefited from this reserve. What has been agreed with respect to the financing of the 12 carbon capture and storage demonstration projects requested by a previous European Council The European Parliaments Environment Committee tabled an amendment to the EU ETS Directive requiring allowances in the new entrant reserve to be set aside in order to co-finance up to 12 demonstration projects as requested by the European Council in spring 2007. This amendment has later been extended to include also innovative renewable energy technologies that are not commercially viable yet. Projects shall be selected on the basis of objective and transparent criteria that include requirements for knowledge sharing. Support shall be given from the proceeds of these allowances via Member States and shall be complementary to substantial co-financing by the operator of the installation. No project shall receive support via this mechanism that exceeds 15 of the total number of allowances (i. e. 45 million allowances) available for this purpose. The Member State may choose to co-finance the project as well, but will in any case transfer the market value of the attributed allowances to the operator, who will not receive any allowances. A total of 300 million allowances will therefore be set aside until 2015 for this purpose. What is the role of an international agreement and its potential impact on EU ETS When an international agreement is reached, the Commission shall submit a report to the European Parliament and the Council assessing the nature of the measures agreed upon in the international agreement and their implications, in particular with respect to the risk of carbon leakage. On the basis of this report, the Commission shall then adopt a legislative proposal amending the present Directive as appropriate. For the effects on the use of credits from Joint Implementation and Clean Development Mechanism projects, please see the reply to question 20. What are the next steps Member States have to bring into force the legal instruments necessary to comply with certain provisions of the revised Directive by 31 December 2009. This concerns the collection of duly substantiated and verified emissions data from installations that will only be covered by the EU ETS as from 2013, and the national lists of installations and the allocation to each one. For the remaining provisions, the national laws, regulations and administrative provisions only have to be ready by 31 December 2012. The Commission has already started the work on implementation. For example, the collection and analysis of data for use in relation to carbon leakage is ongoing (list of sectors due end 2009). Work is also ongoing to prepare the Regulation on timing, administration and other aspects of auctioning (due by June 2010), the harmonised allocation rules (due end 2010) and the two Regulations on monitoring and reporting of emissions and verification of emissions and accreditation of verifiers (due end 2011).Trading Floor Architecture Trading Floor Architecture Executive Overview Increased competition, higher market data volume, and new regulatory demands are some of the driving forces behind industry changes. Firms are trying to maintain their competitive edge by constantly changing their trading strategies and increasing the speed of trading. A viable architecture has to include the latest technologies from both network and application domains. It has to be modular to provide a manageable path to evolve each component with minimal disruption to the overall system. Therefore the architecture proposed by this paper is based on a services framework. We examine services such as ultra-low latency messaging, latency monitoring, multicast, computing, storage, data and application virtualization, trading resiliency, trading mobility, and thin client. The solution to the complex requirements of the next-generation trading platform must be built with a holistic mindset, crossing the boundaries of traditional silos like business and technology or applications and networking. This documents main goal is to provide guidelines for building an ultra-low latency trading platform while optimizing the raw throughput and message rate for both market data and FIX trading orders. To achieve this, we are proposing the following latency reduction technologies: High speed inter-connectInfiniBand or 10 Gbps connectivity for the trading cluster High-speed messaging bus Application acceleration via RDMA without application re-code Real-time latency monitoring and re-direction of trading traffic to the path with minimum latency Industry Trends and Challenges Next-generation trading architectures have to respond to increased demands for speed, volume, and efficiency. For example, the volume of options market data is expected to double after the introduction of options penny trading in 2007. There are also regulatory demands for best execution, which require handling price updates at rates that approach 1M msgsec. for exchanges. They also require visibility into the freshness of the data and proof that the client got the best possible execution. In the short term, speed of trading and innovation are key differentiators. An increasing number of trades are handled by algorithmic trading applications placed as close as possible to the trade execution venue. A challenge with these quotblack-boxquot trading engines is that they compound the volume increase by issuing orders only to cancel them and re-submit them. The cause of this behavior is lack of visibility into which venue offers best execution. The human trader is now a quotfinancial engineer, quot a quotquantquot (quantitative analyst) with programming skills, who can adjust trading models on the fly. Firms develop new financial instruments like weather derivatives or cross-asset class trades and they need to deploy the new applications quickly and in a scalable fashion. In the long term, competitive differentiation should come from analysis, not just knowledge. The star traders of tomorrow assume risk, achieve true client insight, and consistently beat the market (source IBM: www-935.ibmservicesusimcpdfge510-6270-trader. pdf ). Business resilience has been one main concern of trading firms since September 11, 2001. Solutions in this area range from redundant data centers situated in different geographies and connected to multiple trading venues to virtual trader solutions offering power traders most of the functionality of a trading floor in a remote location. The financial services industry is one of the most demanding in terms of IT requirements. The industry is experiencing an architectural shift towards Services-Oriented Architecture (SOA), Web services, and virtualization of IT resources. SOA takes advantage of the increase in network speed to enable dynamic binding and virtualization of software components. This allows the creation of new applications without losing the investment in existing systems and infrastructure. The concept has the potential to revolutionize the way integration is done, enabling significant reductions in the complexity and cost of such integration (gigaspacesdownloadMerrilLynchGigaSpacesWP. pdf ). Another trend is the consolidation of servers into data center server farms, while trader desks have only KVM extensions and ultra-thin clients (e. g. SunRay and HP blade solutions). High-speed Metro Area Networks enable market data to be multicast between different locations, enabling the virtualization of the trading floor. High-Level Architecture Figure 1 depicts the high-level architecture of a trading environment. The ticker plant and the algorithmic trading engines are located in the high performance trading cluster in the firms data center or at the exchange. The human traders are located in the end-user applications area. Functionally there are two application components in the enterprise trading environment, publishers and subscribers. The messaging bus provides the communication path between publishers and subscribers. There are two types of traffic specific to a trading environment: Market DataCarries pricing information for financial instruments, news, and other value-added information such as analytics. It is unidirectional and very latency sensitive, typically delivered over UDP multicast. It is measured in updatessec. and in Mbps. Market data flows from one or multiple external feeds, coming from market data providers like stock exchanges, data aggregators, and ECNs. Each provider has their own market data format. The data is received by feed handlers, specialized applications which normalize and clean the data and then send it to data consumers, such as pricing engines, algorithmic trading applications, or human traders. Sell-side firms also send the market data to their clients, buy-side firms such as mutual funds, hedge funds, and other asset managers. Some buy-side firms may opt to receive direct feeds from exchanges, reducing latency. Figure 1 Trading Architecture for a Buy SideSell Side Firm There is no industry standard for market data formats. Each exchange has their proprietary format. Financial content providers such as Reuters and Bloomberg aggregate different sources of market data, normalize it, and add news or analytics. Examples of consolidated feeds are RDF (Reuters Data Feed), RWF (Reuters Wire Format), and Bloomberg Professional Services Data. To deliver lower latency market data, both vendors have released real-time market data feeds which are less processed and have less analytics: Bloomberg B-PipeWith B-Pipe, Bloomberg de-couples their market data feed from their distribution platform because a Bloomberg terminal is not required for get B-Pipe. Wombat and Reuters Feed Handlers have announced support for B-Pipe. A firm may decide to receive feeds directly from an exchange to reduce latency. The gains in transmission speed can be between 150 milliseconds to 500 milliseconds. These feeds are more complex and more expensive and the firm has to build and maintain their own ticker plant (financetechfeaturedshowArticle. jhtmlarticleID60404306 ). Trading OrdersThis type of traffic carries the actual trades. It is bi-directional and very latency sensitive. It is measured in messagessec. and Mbps. The orders originate from a buy side or sell side firm and are sent to trading venues like an Exchange or ECN for execution. The most common format for order transport is FIX (Financial Information eXchangefixprotocol. org ). The applications which handle FIX messages are called FIX engines and they interface with order management systems (OMS). An optimization to FIX is called FAST (Fix Adapted for Streaming), which uses a compression schema to reduce message length and, in effect, reduce latency. FAST is targeted more to the delivery of market data and has the potential to become a standard. FAST can also be used as a compression schema for proprietary market data formats. To reduce latency, firms may opt to establish Direct Market Access (DMA). DMA is the automated process of routing a securities order directly to an execution venue, therefore avoiding the intervention by a third-party (towergroupresearchcontentglossary. jsppage1ampglossaryId383 ). DMA requires a direct connection to the execution venue. The messaging bus is middleware software from vendors such as Tibco, 29West, Reuters RMDS, or an open source platform such as AMQP. The messaging bus uses a reliable mechanism to deliver messages. The transport can be done over TCPIP (TibcoEMS, 29West, RMDS, and AMQP) or UDPmulticast (TibcoRV, 29West, and RMDS). One important concept in message distribution is the quottopic stream, quot which is a subset of market data defined by criteria such as ticker symbol, industry, or a certain basket of financial instruments. Subscribers join topic groups mapped to one or multiple sub-topics in order to receive only the relevant information. In the past, all traders received all market data. At the current volumes of traffic, this would be sub-optimal. The network plays a critical role in the trading environment. Market data is carried to the trading floor where the human traders are located via a Campus or Metro Area high-speed network. High availability and low latency, as well as high throughput, are the most important metrics. The high performance trading environment has most of its components in the Data Center server farm. To minimize latency, the algorithmic trading engines need to be located in the proximity of the feed handlers, FIX engines, and order management systems. An alternate deployment model has the algorithmic trading systems located at an exchange or a service provider with fast connectivity to multiple exchanges. Deployment Models There are two deployment models for a high performance trading platform. Firms may chose to have a mix of the two: Data Center of the trading firm (Figure 2 )This is the traditional model, where a full-fledged trading platform is developed and maintained by the firm with communication links to all the trading venues. Latency varies with the speed of the links and the number of hops between the firm and the venues. Figure 2 Traditional Deployment Model Co-location at the trading venue (exchanges, financial service providers (FSP)) (Figure 3 ) The trading firm deploys its automated trading platform as close as possible to the execution venues to minimize latency. Figure 3 Hosted Deployment Model Services-Oriented Trading Architecture We are proposing a services-oriented framework for building the next-generation trading architecture. This approach provides a conceptual framework and an implementation path based on modularization and minimization of inter-dependencies. This framework provides firms with a methodology to: Evaluate their current state in terms of services Prioritize services based on their value to the business Evolve the trading platform to the desired state using a modular approach The high performance trading architecture relies on the following services, as defined by the services architecture framework represented in Figure 4. Figure 4 Service Architecture Framework for High Performance Trading Ultra-Low Latency Messaging Service This service is provided by the messaging bus, which is a software system that solves the problem of connecting many-to-many applications. The system consists of: A set of pre-defined message schemas A set of common command messages A shared application infrastructure for sending the messages to recipients. The shared infrastructure can be based on a message broker or on a publishsubscribe model. The key requirements for the next-generation messaging bus are (source 29West): Lowest possible latency (e. g. less than 100 microseconds) Stability under heavy load (e. g. more than 1.4 million msgsec.) Control and flexibility (rate control and configurable transports) There are efforts in the industry to standardize the messaging bus. Advanced Message Queueing Protocol (AMQP) is an example of an open standard championed by J. P. Morgan Chase and supported by a group of vendors such as Cisco, Envoy Technologies, Red Hat, TWIST Process Innovations, Iona, 29West, and iMatix. Two of the main goals are to provide a more simple path to inter-operability for applications written on different platforms and modularity so that the middleware can be easily evolved. In very general terms, an AMQP server is analogous to an E-mail server with each exchange acting as a message transfer agent and each message queue as a mailbox. The bindings define the routing tables in each transfer agent. Publishers send messages to individual transfer agents, which then route the messages into mailboxes. Consumers take messages from mailboxes, which creates a powerful and flexible model that is simple (source: amqp. orgtikiwikitiki-index. phppageOpenApproachWhyAMQP ). Latency Monitoring Service The main requirements for this service are: Sub-millisecond granularity of measurements Near-real time visibility without adding latency to the trading traffic Ability to differentiate application processing latency from network transit latency Ability to handle high message rates Provide a programmatic interface for trading applications to receive latency data, thus enabling algorithmic trading engines to adapt to changing conditions Correlate network events with application events for troubleshooting purposes Latency can be defined as the time interval between when a trade order is sent and when the same order is acknowledged and acted upon by the receiving party. Addressing the latency issue is a complex problem, requiring a holistic approach that identifies all sources of latency and applies different technologies at different layers of the system. Figure 5 depicts the variety of components that can introduce latency at each layer of the OSI stack. It also maps each source of latency with a possible solution and a monitoring solution. This layered approach can give firms a more structured way of attacking the latency issue, whereby each component can be thought of as a service and treated consistently across the firm. Maintaining an accurate measure of the dynamic state of this time interval across alternative routes and destinations can be of great assistance in tactical trading decisions. The ability to identify the exact location of delays, whether in the customers edge network, the central processing hub, or the transaction application level, significantly determines the ability of service providers to meet their trading service-level agreements (SLAs). For buy-side and sell-side forms, as well as for market-data syndicators, the quick identification and removal of bottlenecks translates directly into enhanced trade opportunities and revenue. Figure 5 Latency Management Architecture Cisco Low-Latency Monitoring Tools Traditional network monitoring tools operate with minutes or seconds granularity. Next-generation trading platforms, especially those supporting algorithmic trading, require latencies less than 5 ms and extremely low levels of packet loss. On a Gigabit LAN, a 100 ms microburst can cause 10,000 transactions to be lost or excessively delayed. Cisco offers its customers a choice of tools to measure latency in a trading environment: Bandwidth Quality Manager (BQM) (OEM from Corvil) Cisco AON-based Financial Services Latency Monitoring Solution (FSMS) Bandwidth Quality Manager Bandwidth Quality Manager (BQM) 4.0 is a next-generation network application performance management product that enables customers to monitor and provision their network for controlled levels of latency and loss performance. While BQM is not exclusively targeted at trading networks, its microsecond visibility combined with intelligent bandwidth provisioning features make it ideal for these demanding environments. Cisco BQM 4.0 implements a broad set of patented and patent-pending traffic measurement and network analysis technologies that give the user unprecedented visibility and understanding of how to optimize the network for maximum application performance. Cisco BQM is now supported on the product family of Cisco Application Deployment Engine (ADE). The Cisco ADE product family is the platform of choice for Cisco network management applications. BQM Benefits Cisco BQM micro-visibility is the ability to detect, measure, and analyze latency, jitter, and loss inducing traffic events down to microsecond levels of granularity with per packet resolution. This enables Cisco BQM to detect and determine the impact of traffic events on network latency, jitter, and loss. Critical for trading environments is that BQM can support latency, loss, and jitter measurements one-way for both TCP and UDP (multicast) traffic. This means it reports seamlessly for both trading traffic and market data feeds. BQM allows the user to specify a comprehensive set of thresholds (against microburst activity, latency, loss, jitter, utilization, etc.) on all interfaces. BQM then operates a background rolling packet capture. Whenever a threshold violation or other potential performance degradation event occurs, it triggers Cisco BQM to store the packet capture to disk for later analysis. This allows the user to examine in full detail both the application traffic that was affected by performance degradation (quotthe victimsquot) and the traffic that caused the performance degradation (quotthe culpritsquot). This can significantly reduce the time spent diagnosing and resolving network performance issues. BQM is also able to provide detailed bandwidth and quality of service (QoS) policy provisioning recommendations, which the user can directly apply to achieve desired network performance. BQM Measurements Illustrated To understand the difference between some of the more conventional measurement techniques and the visibility provided by BQM, we can look at some comparison graphs. In the first set of graphs (Figure 6 and Figure 7 ), we see the difference between the latency measured by BQMs Passive Network Quality Monitor (PNQM) and the latency measured by injecting ping packets every 1 second into the traffic stream. In Figure 6. we see the latency reported by 1-second ICMP ping packets for real network traffic (it is divided by 2 to give an estimate for the one-way delay). It shows the delay comfortably below about 5ms for almost all of the time. Figure 6 Latency Reported by 1-Second ICMP Ping Packets for Real Network Traffic In Figure 7. we see the latency reported by PNQM for the same traffic at the same time. Here we see that by measuring the one-way latency of the actual application packets, we get a radically different picture. Here the latency is seen to be hovering around 20 ms, with occasional bursts far higher. The explanation is that because ping is sending packets only every second, it is completely missing most of the application traffic latency. In fact, ping results typically only indicate round trip propagation delay rather than realistic application latency across the network. Figure 7 Latency Reported by PNQM for Real Network Traffic In the second example (Figure 8 ), we see the difference in reported link load or saturation levels between a 5-minute average view and a 5 ms microburst view (BQM can report on microbursts down to about 10-100 nanosecond accuracy). The green line shows the average utilization at 5-minute averages to be low, maybe up to 5 Mbitss. The dark blue plot shows the 5ms microburst activity reaching between 75 Mbitss and 100 Mbitss, the LAN speed effectively. BQM shows this level of granularity for all applications and it also gives clear provisioning rules to enable the user to control or neutralize these microbursts. Figure 8 Difference in Reported Link Load Between a 5-Minute Average View and a 5 ms Microburst View BQM Deployment in the Trading Network Figure 9 shows a typical BQM deployment in a trading network. Figure 9 Typical BQM Deployment in a Trading Network BQM can then be used to answer these types of questions: Are any of my Gigabit LAN core links saturated for more than X milliseconds Is this causing loss Which links would most benefit from an upgrade to Etherchannel or 10 Gigabit speeds What application traffic is causing the saturation of my 1 Gigabit links Is any of the market data experiencing end-to-end loss How much additional latency does the failover data center experience Is this link sized correctly to deal with microbursts Are my traders getting low latency updates from the market data distribution layer Are they seeing any delays greater than X milliseconds Being able to answer these questions simply and effectively saves time and money in running the trading network. BQM is an essential tool for gaining visibility in market data and trading environments. It provides granular end-to-end latency measurements in complex infrastructures that experience high-volume data movement. Effectively detecting microbursts in sub-millisecond levels and receiving expert analysis on a particular event is invaluable to trading floor architects. Smart bandwidth provisioning recommendations, such as sizing and what-if analysis, provide greater agility to respond to volatile market conditions. As the explosion of algorithmic trading and increasing message rates continues, BQM, combined with its QoS tool, provides the capability of implementing QoS policies that can protect critical trading applications. Cisco Financial Services Latency Monitoring Solution Cisco and Trading Metrics have collaborated on latency monitoring solutions for FIX order flow and market data monitoring. Cisco AON technology is the foundation for a new class of network-embedded products and solutions that help merge intelligent networks with application infrastructure, based on either service-oriented or traditional architectures. Trading Metrics is a leading provider of analytics software for network infrastructure and application latency monitoring purposes (tradingmetrics ). The Cisco AON Financial Services Latency Monitoring Solution (FSMS) correlated two kinds of events at the point of observation: Network events correlated directly with coincident application message handling Trade order flow and matching market update events Using time stamps asserted at the point of capture in the network, real-time analysis of these correlated data streams permits precise identification of bottlenecks across the infrastructure while a trade is being executed or market data is being distributed. By monitoring and measuring latency early in the cycle, financial companies can make better decisions about which network serviceand which intermediary, market, or counterpartyto select for routing trade orders. Likewise, this knowledge allows more streamlined access to updated market data (stock quotes, economic news, etc.), which is an important basis for initiating, withdrawing from, or pursuing market opportunities. The components of the solution are: AON hardware in three form factors: AON Network Module for Cisco 2600280037003800 routers AON Blade for the Cisco Catalyst 6500 series AON 8340 Appliance Trading Metrics MampA 2.0 software, which provides the monitoring and alerting application, displays latency graphs on a dashboard, and issues alerts when slowdowns occur (tradingmetricsTMbrochure. pdf ). Figure 10 AON-Based FIX Latency Monitoring Cisco IP SLA Cisco IP SLA is an embedded network management tool in Cisco IOS which allows routers and switches to generate synthetic traffic streams which can be measured for latency, jitter, packet loss, and other criteria (ciscogoipsla ). Two key concepts are the source of the generated traffic and the target. Both of these run an IP SLA quotresponder, quot which has the responsibility to timestamp the control traffic before it is sourced and returned by the target (for a round trip measurement). Various traffic types can be sourced within IP SLA and they are aimed at different metrics and target different services and applications. The UDP jitter operation is used to measure one-way and round-trip delay and report variations. As the traffic is time stamped on both sending and target devices using the responder capability, the round trip delay is characterized as the delta between the two timestamps. A new feature was introduced in IOS 12.3(14)T, IP SLA Sub Millisecond Reporting, which allows for timestamps to be displayed with a resolution in microseconds, thus providing a level of granularity not previously available. This new feature has now made IP SLA relevant to campus networks where network latency is typically in the range of 300-800 microseconds and the ability to detect trends and spikes (brief trends) based on microsecond granularity counters is a requirement for customers engaged in time-sensitive electronic trading environments. As a result, IP SLA is now being considered by significant numbers of financial organizations as they are all faced with requirements to: Report baseline latency to their users Trend baseline latency over time Respond quickly to traffic bursts that cause changes in the reported latency Sub-millisecond reporting is necessary for these customers, since many campus and backbones are currently delivering under a second of latency across several switch hops. Electronic trading environments have generally worked to eliminate or minimize all areas of device and network latency to deliver rapid order fulfillment to the business. Reporting that network response times are quotjust under one millisecondquot is no longer sufficient the granularity of latency measurements reported across a network segment or backbone need to be closer to 300-800 micro-seconds with a degree of resolution of 100 igrave seconds. IP SLA recently added support for IP multicast test streams, which can measure market data latency. A typical network topology is shown in Figure 11 with the IP SLA shadow routers, sources, and responders. Figure 11 IP SLA Deployment Computing Services Computing services cover a wide range of technologies with the goal of eliminating memory and CPU bottlenecks created by the processing of network packets. Trading applications consume high volumes of market data and the servers have to dedicate resources to processing network traffic instead of application processing. Transport processingAt high speeds, network packet processing can consume a significant amount of server CPU cycles and memory. An established rule of thumb states that 1Gbps of network bandwidth requires 1 GHz of processor capacity (source Intel white paper on IO acceleration inteltechnologyioacceleration306517.pdf ). Intermediate buffer copyingIn a conventional network stack implementation, data needs to be copied by the CPU between network buffers and application buffers. This overhead is worsened by the fact that memory speeds have not kept up with increases in CPU speeds. For example, processors like the Intel Xeon are approaching 4 GHz, while RAM chips hover around 400MHz (for DDR 3200 memory) (source Intel inteltechnologyioacceleration306517.pdf ). Context switchingEvery time an individual packet needs to be processed, the CPU performs a context switch from application context to network traffic context. This overhead could be reduced if the switch would occur only when the whole application buffer is complete. Figure 12 Sources of Overhead in Data Center Servers TCP Offload Engine (TOE)Offloads transport processor cycles to the NIC. Moves TCPIP protocol stack buffer copies from system memory to NIC memory. Remote Direct Memory Access (RDMA)Enables a network adapter to transfer data directly from application to application without involving the operating system. Eliminates intermediate and application buffer copies (memory bandwidth consumption). Kernel bypass Direct user-level access to hardware. Dramatically reduces application context switches. Figure 13 RDMA and Kernel Bypass InfiniBand is a point-to-point (switched fabric) bidirectional serial communication link which implements RDMA, among other features. Cisco offers an InfiniBand switch, the Server Fabric Switch (SFS): ciscoapplicationpdfenusguestnetsolns500c643cdccont0900aecd804c35cb. pdf. Figure 14 Typical SFS Deployment Trading applications benefit from the reduction in latency and latency variability, as proved by a test performed with the Cisco SFS and Wombat Feed Handlers by Stac Research: Application Virtualization Service De-coupling the application from the underlying OS and server hardware enables them to run as network services. One application can be run in parallel on multiple servers, or multiple applications can be run on the same server, as the best resource allocation dictates. This decoupling enables better load balancing and disaster recovery for business continuance strategies. The process of re-allocating computing resources to an application is dynamic. Using an application virtualization system like Data Synapses GridServer, applications can migrate, using pre-configured policies, to under-utilized servers in a supply-matches-demand process (wwwworkworldsupp2005ndc1022105virtual. htmlpage2 ). There are many business advantages for financial firms who adopt application virtualization: Faster time to market for new products and services Faster integration of firms following merger and acquisition activity Increased application availability Better workload distribution, which creates more quothead roomquot for processing spikes in trading volume Operational efficiency and control Reduction in IT complexity Currently, application virtualization is not used in the trading front-office. One use-case is risk modeling, like Monte Carlo simulations. As the technology evolves, it is conceivable that some the trading platforms will adopt it. Data Virtualization Service To effectively share resources across distributed enterprise applications, firms must be able to leverage data across multiple sources in real-time while ensuring data integrity. With solutions from data virtualization software vendors such as Gemstone or Tangosol (now Oracle), financial firms can access heterogeneous sources of data as a single system image that enables connectivity between business processes and unrestrained application access to distributed caching. The net result is that all users have instant access to these data resources across a distributed network (gridtoday030210101061.html ). This is called a data grid and is the first step in the process of creating what Gartner calls Extreme Transaction Processing (XTP) (gartnerDisplayDocumentrefgsearchampid500947 ). Technologies such as data and applications virtualization enable financial firms to perform real-time complex analytics, event-driven applications, and dynamic resource allocation. One example of data virtualization in action is a global order book application. An order book is the repository of active orders that is published by the exchange or other market makers. A global order book aggregates orders from around the world from markets that operate independently. The biggest challenge for the application is scalability over WAN connectivity because it has to maintain state. Todays data grids are localized in data centers connected by Metro Area Networks (MAN). This is mainly because the applications themselves have limitsthey have been developed without the WAN in mind. Figure 15 GemStone GemFire Distributed Caching Before data virtualization, applications used database clustering for failover and scalability. This solution is limited by the performance of the underlying database. Failover is slower because the data is committed to disc. With data grids, the data which is part of the active state is cached in memory, which reduces drastically the failover time. Scaling the data grid means just adding more distributed resources, providing a more deterministic performance compared to a database cluster. Multicast Service Market data delivery is a perfect example of an application that needs to deliver the same data stream to hundreds and potentially thousands of end users. Market data services have been implemented with TCP or UDP broadcast as the network layer, but those implementations have limited scalability. Using TCP requires a separate socket and sliding window on the server for each recipient. UDP broadcast requires a separate copy of the stream for each destination subnet. Both of these methods exhaust the resources of the servers and the network. The server side must transmit and service each of the streams individually, which requires larger and larger server farms. On the network side, the required bandwidth for the application increases in a linear fashion. For example, to send a 1 Mbps stream to 1000recipients using TCP requires 1 Gbps of bandwidth. IP multicast is the only way to scale market data delivery. To deliver a 1 Mbps stream to 1000 recipients, IP multicast would require 1 Mbps. The stream can be delivered by as few as two serversone primary and one backup for redundancy. There are two main phases of market data delivery to the end user. In the first phase, the data stream must be brought from the exchange into the brokerages network. Typically the feeds are terminated in a data center on the customer premise. The feeds are then processed by a feed handler, which may normalize the data stream into a common format and then republish into the application messaging servers in the data center. The second phase involves injecting the data stream into the application messaging bus which feeds the core infrastructure of the trading applications. The large brokerage houses have thousands of applications that use the market data streams for various purposes, such as live trades, long term trending, arbitrage, etc. Many of these applications listen to the feeds and then republish their own analytical and derivative information. For example, a brokerage may compare the prices of CSCO to the option prices of CSCO on another exchange and then publish ratings which a different application may monitor to determine how much they are out of synchronization. Figure 16 Market Data Distribution Players The delivery of these data streams is typically over a reliable multicast transport protocol, traditionally Tibco Rendezvous. Tibco RV operates in a publish and subscribe environment. Each financial instrument is given a subject name, such as CSCO. last. Each application server can request the individual instruments of interest by their subject name and receive just a that subset of the information. This is called subject-based forwarding or filtering. Subject-based filtering is patented by Tibco. A distinction should be made between the first and second phases of market data delivery. The delivery of market data from the exchange to the brokerage is mostly a one-to-many application. The only exception to the unidirectional nature of market data may be retransmission requests, which are usually sent using unicast. The trading applications, however, are definitely many-to-many applications and may interact with the exchanges to place orders. Figure 17 Market Data Architecture Design Issues Number of GroupsChannels to Use Many application developers consider using thousand of multicast groups to give them the ability to divide up products or instruments into small buckets. Normally these applications send many small messages as part of their information bus. Usually several messages are sent in each packet that are received by many users. Sending fewer messages in each packet increases the overhead necessary for each message. In the extreme case, sending only one message in each packet quickly reaches the point of diminishing returnsthere is more overhead sent than actual data. Application developers must find a reasonable compromise between the number of groups and breaking up their products into logical buckets. Consider, for example, the Nasdaq Quotation Dissemination Service (NQDS). The instruments are broken up alphabetically: This approach allows for straight forward networkapplication management, but does not necessarily allow for optimized bandwidth utilization for most users. A user of NQDS that is interested in technology stocks, and would like to subscribe to just CSCO and INTL, would have to pull down all the data for the first two groups of NQDS. Understanding the way users pull down the data and then organize it into appropriate logical groups optimizes the bandwidth for each user. In many market data applications, optimizing the data organization would be of limited value. Typically customers bring in all data into a few machines and filter the instruments. Using more groups is just more overhead for the stack and does not help the customers conserve bandwidth. Another approach might be to keep the groups down to a minimum level and use UDP port numbers to further differentiate if necessary. The other extreme would be to use just one multicast group for the entire application and then have the end user filter the data. In some situations this may be sufficient. Intermittent Sources A common issue with market data applications are servers that send data to a multicast group and then go silent for more than 3.5 minutes. These intermittent sources may cause trashing of state on the network and can introduce packet loss during the window of time when soft state and then hardware shorts are being created. PIM-Bidir or PIM-SSM The first and best solution for intermittent sources is to use PIM-Bidir for many-to-many applications and PIM-SSM for one-to-many applications. Both of these optimizations of the PIM protocol do not have any data-driven events in creating forwarding state. That means that as long as the receivers are subscribed to the streams, the network has the forwarding state created in the hardware switching path. Intermittent sources are not an issue with PIM-Bidir and PIM-SSM. Null Packets In PIM-SM environments a common method to make sure forwarding state is created is to send a burst of null packets to the multicast group before the actual data stream. The application must efficiently ignore these null data packets to ensure it does not affect performance. The sources must only send the burst of packets if they have been silent for more than 3 minutes. A good practice is to send the burst if the source is silent for more than a minute. Many financials send out an initial burst of traffic in the morning and then all well-behaved sources do not have problems. Periodic Keepalives or Heartbeats An alternative approach for PIM-SM environments is for sources to send periodic heartbeat messages to the multicast groups. This is a similar approach to the null packets, but the packets can be sent on a regular timer so that the forwarding state never expires. S, G Expiry Timer Finally, Cisco has made a modification to the operation of the S, G expiry timer in IOS. There is now a CLI knob to allow the state for a S, G to stay alive for hours without any traffic being sent. The (S, G) expiry timer is configurable. This approach should be considered a workaround until PIM-Bidir or PIM-SSM is deployed or the application is fixed. RTCP Feedback A common issue with real time voice and video applications that use RTP is the use of RTCP feedback traffic. Unnecessary use of the feedback option can create excessive multicast state in the network. If the RTCP traffic is not required by the application it should be avoided. Fast Producers and Slow Consumers Today many servers providing market data are attached at Gigabit speeds, while the receivers are attached at different speeds, usually 100Mbps. This creates the potential for receivers to drop packets and request re-transmissions, which creates more traffic that the slowest consumers cannot handle, continuing the vicious circle. The solution needs to be some type of access control in the application that limits the amount of data that one host can request. QoS and other network functions can mitigate the problem, but ultimately the subscriptions need to be managed in the application. Tibco Heartbeats TibcoRV has had the ability to use IP multicast for the heartbeat between the TICs for many years. However, there are some brokerage houses that are still using very old versions of TibcoRV that use UDP broadcast support for the resiliency. This limitation is often cited as a reason to maintain a Layer 2 infrastructure between TICs located in different data centers. These older versions of TibcoRV should be phased out in favor of the IP multicast supported versions. Multicast Forwarding Options PIM Sparse Mode The standard IP multicast forwarding protocol used today for market data delivery is PIM Sparse Mode. It is supported on all Cisco routers and switches and is well understood. PIM-SM can be used in all the network components from the exchange, FSP, and brokerage. There are, however, some long-standing issues and unnecessary complexity associated with a PIM-SM deployment that could be avoided by using PIM-Bidir and PIM-SSM. These are covered in the next sections. The main components of the PIM-SM implementation are: PIM Sparse Mode v2 Shared Tree (spt-threshold infinity) A design option in the brokerage or in the exchange.

No comments:

Post a Comment